Hamming polynomials and their partial derivatives
نویسندگان
چکیده
Hamming graphs are Cartesian products of complete graphs and partial Hamming graphs are their isometric subgraphs. The Hamming polynomial h(G) of a graph G is introduced as the Hamming subgraphs counting polynomial. Kk-derivates ∂kG (k ≥ 2) of a partial Hamming graph are also introduced. It is proved that for a partial Hamming graph G, ∂h(G) ∂xk = h(∂kG). A couple of combinatorial identities involving the coefficients of the Hamming polynomials of Hamming graphs are also proven.
منابع مشابه
Partial Derivatives in Arithmetic Complexity and Beyond
How complex is a given multivariate polynomial? The main point of this survey is that one can learn a great deal about the structure and complexity of polynomials by studying (some of) their partial derivatives. The bulk of the survey shows that partial derivatives provide essential ingredients in proving both upper and lower bounds for computing polynomials by a variety of natural arithmetic m...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملEnumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method
The current paper deals with the enumeration and classification of the set SORr,n of self-orthogonal r × r partial Latin rectangles based on n symbols. These combinatorial objects are identified with the independent sets of a Hamming graph and with the zeros of a radical zero-dimensional ideal of polynomials, whose reduced Gröbner basis and Hilbert series can be computed to determine explicitly...
متن کاملB - 433 Efficient Evaluation of Polynomials and Their Partial Derivatives in Homotopy Continuation Methods
The aim of this paper is to study how efficiently we evaluate a system of multivariate polynomials and their partial derivatives in homotopy continuation methods. Our major tool is an extension of the Horner scheme, which is popular in evaluating a univariate polynomial, to a multivariate polynomial. But the extension is not unique, and there are many Horner factorizations of a given multivaria...
متن کاملEfficient Evaluation of Polynomials and Their Partial Derivatives in Homotopy Continuation Methods
The aim of this paper is to study how efficiently we evaluate a system of multivariate polynomials and their partial derivatives in homotopy continuation methods. Our major tool is an extension of the Horner scheme, which is popular in evaluating a univariate polynomial, to a multivariate polynomial. But the extension is not unique, and there are many Horner factorizations of a given multivaria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 28 شماره
صفحات -
تاریخ انتشار 2007